在这项工作中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习的局部准确性与几何方法的全球一致性结合在一起,以实现强大的非刚性匹配。我们首先观察到,尽管对比度学习可以导致强大的点特征,但由于标准对比度损失的纯粹组合性质,学到的对应关系通常缺乏平滑度和一致性。为了克服这一局限性,我们建议通过两种类型的平滑度正则化来提高对比性学习,从而将几何信息注入对应学习。借助这种新颖的组合,所得的特征既具有跨个别点的高度歧视性,又可以通过简单的接近查询导致坚固且一致的对应关系。我们的框架是一般的,适用于3D和2D域中的本地功能学习。我们通过在各种挑战性的匹配基准上进行广泛的实验来证明我们的方法的优势,包括3D非刚性形状对应关系和2D图像关键点匹配。
translated by 谷歌翻译
几何数据的高效和实际表示是几何处理中的几种应用的普遍存在问题。广泛使用的选择是通过它们的光谱嵌入对3D对象进行编码,与每个表面点相关联通过差分操作员的特征函数的截断子集在该点处假定的值(通常是拉普拉斯人)。几次尝试为不同应用程序定义新的,优选的嵌入物在过去十年中看到了光明。尽管有限制,但标准拉普利亚特征障碍仍然在可用解决方案的顶部保持稳定,例如限于近体形状匹配的近等待物。最近,一个新的趋势表明了学习Laplacian特征障碍的替代品的优势。与此同时,许多研究问题仍未解决:新的基础比LBO特征功能更好,以及它们如何与他们联系?它们如何在功能形式的角度下采取行动?以及如何与其他功能和描述符在新配置中利用这些基础?在这项研究中,我们正确地提出了这些问题,以改善我们对这种新兴的研究方向的理解。我们在不同的背景下展示了他们的应用相关性,揭示了他们的一些见解和令人兴奋的未来方向。
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译